
www.manaraa.com

Automated Support for Software Development with Frameworks

Albert Schappert and Peter Sommerlad
Siemens AG - Dept.: ZFE T SE

D-81730 Munich, Germany

Voice: ++49 89 636-48148 Fax: -45111

E-mail: falbert.schappert,peter.sommerladg@zfe.siemens.de

Wolfgang Pree
C. Doppler Laboratory for Software Engineering

Johannes Kepler University - A-4040 Linz, Austria

Voice: ++43 70 2468-9431 Fax: -9430

E-mail: pree@swe.uni-linz.ac.at

Abstract

This document presents some of the results of an industrial research
project on automation of software development. The project’s ob-
jective is to improve productivity and quality of software devel-
opment. We see software development based on frameworks and
libraries of prefabricated components as a step in this direction.
An adequate development style consists of two complementary
activities: the creation of frameworks and new components for
functionality not available and the composition and configuration
of existing components.

Just providing adequate frameworks and components does not
necessarily yield automation and efficiency of software develop-
ment. We developed the concept of relations between software
components as a foundation for abstraction, reuse and automatic
code generation for component interrelationship. Furthermore we
suggest to supplement frameworks with an active cookbook con-
sisting of active recipes which guide the software developer in the
use of framework elements.

In this paper our concept of using relations among software
components is presented and the active cookbook is illustrated as a
means for developer guidance. We created a prototype to demon-
strate these concepts.

1 Introduction

In the past the partitioning of software systems into components
(e.g. subroutines, modules) improved productivity and quality
of the software engineering process. The reasons for this were
the mastering of complexity by abstraction and the possibility of
reuse of existing implementations. With the introduction of object–
oriented techniques it has become easier to implement domain–
specific frameworks in an extensible and adaptable fashion. Such
frameworksconsist of components which are based on abstrac-
tions and their implementations. A set of abstract and concrete
components builds a framework for the solution of a specific prob-
lem [Johnson & Foote, 1988]. The termapplication frameworkis
used if the framework comprises a generic software system for an
application domain.

However, the object–oriented concepts and frameworks intro-
duce additional complexity to software development. A framework
gains its functionality by the cooperation of different components.
Thus, the use of a single component may be based on its interrela-
tionships with others that must be understood and mastered by the
application developer.

Present work on software architecture also emphasizes the in-
terrelationships between software components depending on each
other to get control on this additional complexity. There the termde-
sign patternis used to describe and specify component interaction
mechanisms in an informal way[Pree, 1994a][Buschmannet al.,
1994][Gammaet al., 1994]. We follow this trend of looking at the
component cooperation by using explicit structural information as
a base for our automation approach. The termrelation is used to
describe software component interrelationships. Thus, we consider
software components and relations between them as elements our
concepts are based on.

We distinguish three levels of representation for relations and
components. These levels help to implement the concepts of visual
interaction and automation in the prospected development tools:

visual providing graphical manipulation and adequate
presentation,

structural containing information as a foundation for au-
tomation, and

code for the (re)use of existing implementations.

Modern software development should build on sophisticated
application frameworks that are domain–specific. The existence of
such frameworks implies two complementary ways for application
developmentcomposition & configuration and construction as
shown in figure 1. Both ways use relations as a means for expressing
(possible) component association.

� The composition and configuration of existing components
in predefined/anticipated ways to solve a problem. These
predefined ways of compositions are defined via relations.

� The construction of a new component or relation as a solution
is necessary to provide new functionality that can’t be easily
obtained from the framework.

Since the use of large frameworks is complex the application
developer should be guided through the development process. We
propose an active guidance of the developer by an "active cook-
book" presenting recipes. These recipes contain explanations and
invoke tools to perform a development task. The composition and
configuration spots are the places where such an active recipe sup-



www.manaraa.com

Construction

Application

Library

B1 B2

B3

Composition & 
Configuration

B4

B5

B2

B4

B5

B4

B5

C

Components

Relations

Figure 1: Two styles of development

port is viable. Thus, we extend a framework to include also recipes
and domain specific tools needed by them in addition to software.

We see that our concepts can also be applied to other kinds of
domain–specific libraries with prefabricated components that are
not frameworks.

2 Basic Concepts

In this section the basic concepts of our approach are explained
in detail. Component interrelationship can show up in different
aspects. We call those that manifest on the source code level "struc-
tural relations". If one looks on the aspect of using a part of a
framework, recipes form "methodical relations" defining the neces-
sary development decisions for the configuration and composition.
First we focus on the use of structural relations that are used for
software construction. The methodical relations that manifest as
so–called "active recipes" are explained second.

2.1 Relations

Structural relations are used to extract mechanisms that are usually
implemented across multiple software components. Participating
in such a mechanism requires a certain functionality (i.e. code frag-
ment) at every component. By describing the mechanism explicitly
the functionally is isolated and can be reused by components in
different contexts.

The structural relations allow the description of such mecha-
nisms as well as the reuse of them in different contexts. Depending
on the component concept (e.g. procedure, module, class) and the
structure given by components in the program source text, different
approaches may be necessary to realize structural relations in a way
suitable for software construction1.

1Similar ideas are promoted by Mary Shaw (CMU) under the name "connector"
[Shaw, 1994].

In the object–oriented context of the prototype there are (at
least) three aspects of a structural relation:

� It declares the interfaces to be fulfilled by the attached com-
ponents.

� It describes in an abstract way the interrelationship, such as
an inter–class call–graph.

� It provides a parameterized – eventually schematic – imple-
mentation of the mechanism to be realized by it.

In the future this list will be extended by instructions for the utiliza-
tion of this structural relation (an attached active recipe is explained
in general in the next section).

In our prototype we have chosen C++ classes as components.
In this setting a structural relation consists of two or more plugs,
where components can be attached. Each plug contains the method
interface and a parameterized (schema–) implementation of the
component’s aspects targeted by the relation.

Thus, a plug contains a set of C++ method interfaces and (par-
tial) implementations for the relevant C++ methods. This program
code linked to the relation is parameterized in the plugs. The
plugged in classes provide the parameter values which are the class
name and method interfaces.

A component under construction that is plugged into a structural
relation obtains the interface from the plug and the implementation
of the corresponding methods. The main interaction is completely
visual by dragging the components in place and connecting them
with the plugs via a line.

A structural relation itself can be based on other internal struc-
tural relations as well as on internal components. To construct such
a combined structural relation the relations plugs are constructed
as would be new components on the top level. Thus similar to
components a hierarchical structure of relations is possible giving
a means to abstract from lower–level mechanisms.

Library Workspace

Plug

New
Plug

Relation

Connection

Figure 3: The inner structure of a "relation".

Based on the structural relations code generation for new com-
ponents is possible. This code generation consists of parameter
substitution and the combination of the code fragments in the rela-
tion’s plugs and the attached components. Separate class interface
and implementation files are generated for C++.



www.manaraa.com

Interface
Interface Plug

component

connection

relation
with
plugs

Figure 2: A relation’s plug provides interface and implementation to a newly constructed component (noname).

2.2 Active Guidance

A framework contains predefined places that need to be configured
and where application specific parts are composed. These places
are calledhot–spots[Pree, 1994b]. A developer using a framework
must know the hot–spots for a given problem and how to adapt
them to the application’s needs. Large frameworks typically suffer
from a steep learning curve. In the past a developer needed to
consult the source code or a large reference manual to find the hot
spots and how to configure and compose the building blocks of the
framework.

To ease the learning curve and use of a framework the cook-
book idea emerged. A cookbook consists of recipes that describe
in an informal way how to adapt a framework to specific needs.
Examples of such passive cookbooks for graphical user interface
frameworks are the MVC cookbook [Krasner & Pope, 1988], the
MacApp Cookbook [MacApp, 1989, 1989], and the ET++ Cook-
book [Weinandet al., 1989]. A cookbook’s recipe is typically
structured into the sections purpose, procedure, and source code
example(s). A developer has to search for the recipe that is ap-
propriate to the problem. This recipe is then used by adhering to
the steps given in the procedure section. Very often a solution is
obtained by using and extending the example source code.

We emphasize the cookbook idea and extend it to the active
cookbook. First the recipes with their inherent references to other
recipes and source code indicate a computer–based implementation
in a hypertext structure. Second we see that some steps required by
recipes are better supported by the integration of specialized (visual)
tools and editors than by textual editing code. Further support of
the developer is obtained by demanding required recipe steps before
others and by generating program source code based on decisions
of the developer. Thus the development system provides for every
action exactly the appropriate and specialized tool that is needed.

As stated above especially the use of visual tools is recom-
mended in recipes of an active cookbook. Such visual tools allow
an easy arrangement of components and provide a better overview
than textual ones. An example may be a visual editor displaying
(part of) a class hierarchy and allowing the creation of specific
subclasses visually (see figure 4).

Figure 4: An active recipe with an activated tool.



www.manaraa.com

2.3 Desirable Features of a Development System

There exists a set of desirable features a proposed development
system should have. Those that are already demonstrated by our
prototype are

� visual development,

� active conduction,

� flexible guidance,

� context–sensitive behaviour, and

� incremental extensibility.

In the prototype the features are interwoven in order to achieve a
seamless support for software development. For clarity we discuss
them separately in the following.

Other features not yet addressed are cooperative and distributed
software development, development process control and the inte-
gration of other non-software artefacts into the development system.

Visual Development

In many cases a visual way of doing software development can
be more efficient. The complex structural relationships in software
systems can be better mastered by a visual representation than just
having many source text windows. Especially for routine tasks a
visual representation supplemented with automatic code generation
will improve productivity.

Active Conduction

Each recipe includes the tools needed by its steps. These tools
are activated by the recipe. In addition to the navigation through
recipes they provide an active support to the developer according
to the motto"the right tool at the right place."There is no need to
search for the tool or to parameterize it for the specific needed task.
These things are provided by the recipes. The activated tools signal
(successful) completion of their task to the recipe so that further
steps can be started.

Flexible Guidance

The active–cookbook approach allows an easy way of naviga-
tion through the recipes using hyper–links. Once a user has found
the recipe he wants for further development this recipe guides him
through the needed configuration and composition steps. The de-
veloper gets the amount of explanation he needs. Although the
sequence of development steps are predefined, he can freely navi-
gate between them.

Context – sensitive Behaviour

Depending on the design decisions, the development system
must vary its conductive steps. For example, depending on the
components or relations used when applying a recipe, different
configuration activities may be necessary. This context sensitive
behaviour is realized by attaching recipes to the components and
relations to be used. Thus the decision for a specific component
will trigger the application of the attached recipe. Further rules can
be present in the recipes to handle more complex cases of changing
the development procedure.

Incremental Extensibility

It is necessary to provide a way for evolution and migration,
when introducing a new idea of support for software development.
Evolution of framework support is provided by a recipe editor and
a means for attaching recipes to existing or newly developed com-
ponents. Migration is supported by using existing source code and
augmenting it with structural information and with recipes.

2.4 Preparation of SE{Environment

The proposed software engineering environment has to be filled
with information to become useful. A framework consisting of
components and structural relations must be developed or an ex-
isting one integrated into our software engineering environment.
The typical use of the framework has to be identified and described
in recipes. Last the tools required by the recipes’ steps must be
developed.

Creating the Library

It is a major effort to develop a domain specific framework. Ideally
the code of the framework is created with structural relations in
mind, so that the relations and components are already part of
it. Nevertheless it is possible to use existing framework source
code and integrate it into our proposed environment by providing
or extracting the structural information. Architecture principles
and design patterns will make the selection of necessary structural
relations easier.

Creating Recipes

An editor for active recipes will allow the creation and modification
of the text of a recipe. Furthermore links to existing tools and
editors may be included into the recipe. Editing the links provides
the information on the actual tool and its parameterization. In the
same manner links to other recipes can be created.

Ideally the developer of a framework creates the according
recipe(s) in parallel to the development of the framework. The
creation of the active guidance during framework development has
some benefits:

� The later use of the framework becomes more transparent to
the framework developer. He will recognize how hard it is to
use and adapt the framework.

� The active guide provides a concrete way of communicating
the architecture and implementation of the framework with
its potential users.

� Design flaws that hinder the adaptation and use of the frame-
work, e.g. improper abstractions, may be detected more
early.

� Useful points of automation and appliance of visual tools are
indicated when the guidance steps are written down.

Creating additional tools and editors

The process of writing active recipes will inspire possible automa-
tion of the development process. New specific tools or editors may
become admirable or necessary. Some generic visual editors or
even a simple textual editor will be sufficient for many tasks. By
providing an own framework for developing new visual tools this
job is more easy to accomplish. In the future we may provide such
a framework and active recipes for writing new tools and editors
that generate the program code.



www.manaraa.com

3 Conclusion

Software development based on domain–specific framework con-
sists of two complementary development styles:

� Composition and configuration of framework parts.

� Construction of new software parts.

We propose tools to support these development styles. These tools
shall provide visual interaction, active developer guidance and the
automatic generation of program code. Buy making use of existing
program code and extending it we maintain a way for migration.

The use of structural information as a base for construction and
code generation is an innovative idea in the tool support. We go
further than browsers for object–oriented software development in
activating the use of such structures by providing them as separate
abstraction and reuse entities that contain also implementation code.

However, it is an open point how to structure a framework and
implement it around a set of relations. A well designed frame-
work consisting good abstractions will not only ease the design of
applications but also by the reuse of relations the design of new
framework elements.

The other more pragmatic way followed was augmenting frame-
works with recipes and visual tools to support software development
with them. There exists a similar problem to software documenta-
tion. It is necessary to maintain the guides and tools in the same
progress as the framework improves. Controlling this framework
evolution via active recipes will make the corresponding progress
in the active guides convenient.

There is the problem of having or creating frameworks suitable
to be supported by active recipes and using structural relations.
Good frameworks can be the base, but their development and use
is not (yet) a mature technology. Only a few high sophisticated
developers are needed to create such a framework for a given do-
main. The cost of establishing such frameworks with integrated
recipes pays off when less experienced developers are actually us-
ing the framework in an efficient way without the need to become
framework experts.

The writing of active recipes during framework development
will make the use of a framework more transparent to its developer.
He will recognize how hard it is to use the framework, write down
the typical adaptation cases and find possibilities for automation
and additional tool support. If such (active) recipes are sketched
in advance they provide a vehicle to communicate the use of a
prospected framework with the potential users and domain experts.
Such communication may improve the design and implementation
of the framework.

A software engineering methodology must be formulated sup-
porting our two styles of development with active tool support for
applications. In addition the methodology must help in creating
frameworks consisting of components, relations, active recipes and
visual tools.

References

Buschmann, F., J¨akel, C., Meunier, R., Rohnert, H., & Stal, M.
1994.Pattern–Oriented Software Architecture. Siemens AG,
Corporate Research and Development, Munich, Germany.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John.
1994. Design patterns: Elements of reusable object-oriented
software. Addison-Wesley.

Johnson, R.E., & Foote, B. 1988. Designing reusable classes.The
Journal of Object–Oriented Programming, 1(2), 22–35.

Krasner, G.E., & Pope, S.T. 1988. A cookbook for using the model–
view–controller user interface paradigm in smalltalk–80.Jour-
nal of object–oriented programming, 1(3).

MacApp, 1989. 1989.MacApp II Programmer’s Guide. Apple
Computer.

Pree, Wolfgang. 1994a.Design Patterns for Object–Oriented Soft-
ware Development. Addison-Wesley.

Pree, Wolfgang. 1994b. Meta Patterns — A Means For Capturing
the Essentials of Reusable Object–Oriented Design.Pages
150–162 of: Tokoro, Mario, & Pareschi, Remo (eds),Object–
Oriented Programming, ECOOP ‘94. Springer–Verlag.

Shaw, Mary. 1994 (Jan.). Procedure Calls Are the Assembly
Language of Software Interconnection: Connectors Deserve
First–Class Status. Tech. rept. CMU-CS-94-107. Carnegie
Mellon University, Pittsburgh, PA 15213–2890.

Weinand, A., Gamma, E., & Marty, R. 1989. Design and Imple-
mentation of ET++, a Seamless Object–Oriented Application
Framework.Structured programming, 10(2), 63–87.


